S337 Humilladero. Málaga

M.A. Parra, R. Fernández-Escobar; C. Navarro, O. Arquero. 2003. *Los suelos y la fertilización del olivar cultivado en zonas calcáreas*. (Perfil múm. 34). JUNTA DE ANDALUCIA. Consejería de Agricultura y Pesca. Ediciones Mundi-Prensa. 256 p.

Normalizado y ampliado por A. Saa y J. Gallardo. 2019.



Perfil: S337

Localización: caserío de Espeazorras, en el camino que bordea por el SE la Sierra del

Humilladero, Málaga.

Fecha: 1996

Autores: M.A. Parra

Coordenadas: 37°05′21′′N – 4°40′01′′W

Hoja Geológica: 1023. Antequera. Unidad cartográfica 18

Altitud: 480 m

Forma del terreno: glacis

Posición fisiográfica: parte cóncava de la ladera

Exposición: Vegetación:

Material originario: coluvión de calizas cretácicas

Hontoria, C. (1995). El régimen de humedad de los suelos de la España peninsular. Tesis

Doctoral. E.T.S.I. Agrónomos (UPM)

Régimen de humedad del suelo: xeric Régimen térmico del suelo: thermic

Grado de erosión: nulo Drenaje: bien drenado

Inundación: no

Zona enraizada: 0-50 cm

Espesor efectivo del suelo: 50 cm

Fragmentos rocosos en la capa superficial (% de > 2 cm): 13%

Pedregosidad superficial (% superficie cubierta con >25cmø ó >38cm lado mayor): 0%

Pendiente general del terreno: 3%

DESCRIPCION DE HORIZONTES

Ар	0-18 cm	3.5YR3/6; 3% de gravilla caliza; textura franco arcilla; estructura débil, granular; límite ento.
Bt	18-45 cm	4.5R3/6; 5% de gravilla caliza; textura franco arcilla; estructura prismática; límite neto y
		ondulado.
Ckm	45-70 cm	Costra caliza fragmentada en los primeros centímetros y cementada en profundidad; se
		distinguen varias capas en la masa cementada.

DATOS ANALITICOS

Horiz. Espesor Grava Granulometría (USDA) % CRAD Ks													
Horiz.	Espesor	Grava			CRAD	Ks							
	cm	%	Arena	Limo	Arcilla	Ar mf.	Limo g.	Limo f.	mm	cm/h			
Ap	0-18		42.5	23.7	33.8								
Bt	18-45		28.6	38.9	32.5								
Ckm	45-70												

Cursiva y subrayado indican que el dato ha sido estimado
Grava 20-2mm; Arena 2-0.05mm; limo 0.05-0.002 mm; Arcilla < 0.002 mm; Arena muy fina 0.1-0.05mm; Limo grueso 0.05-0.02mm;
Limo fino 0.02-0.002mm.

Horizonte	pН	D. apar.	M. O. %	C/N	CaCO3	CE dS/m	Mineralogía	Fe (ppm)	P (ppm)
	(H2O)	gcm ⁻³			%		arcillas	DTPA	Olsen
Ар	8.4		1.3		17.5	0.08		5.0	7.7
Bt	8.3		1.3		3.3	0.06		4.0	2.6
Ckm									

 $I-ilita,\,K-caolinita,\,E-esmectita,\,V-vermiculita,\,G-goetita.$

El orden en que se presentan en cada horizonte indica la abundancia.

Horizonte	Bases	de cambio N	H4OAc [cmo	_{l(+)} /kg]	Acidez	CIC [cn	no _{l(+)} /kg]	Sat. bases	ESP
	Ca	Mg	K	Na	cambio	Suma cat.	NH4OAc	%	
Ар							12.0		
Bt							16.0		
Ckm									

CLASIFICACION

World Refernce Base for Soil Resources 2006	
Diagnostic horizons	Argic (18-45 cm), Petrocalcic (45-70 cm)
Diagnostic properties	
Diagnostic materials	
Reference soil group	Petrocalcic Calcisol (Chromic)

Soil Taxonomy. Eleventh edition 2010	
Diagnostic surface horizon	Ochric (0-18 cm)
Diagnostic subsurface horizon	Argillic (18-45 cm)
	Petrocalcic (45-70 cm)
Diagnostic soil characteristics for mineral soils	
Control section for particle size class	
Taxonomic class of soil	Petrocalcic Rhodoxeralf

CAPACIDAD AGROLOGICA DE LA TIERRA

La Capacidad Agrológica se ha obtenido siguiendo el método de J. Gallardo, A. Saa, CH, Hontoria, J. Almorox. 2005. Mapa Agrológico: Capacidad Agrológica de las Tierras de la Comunidad de Madrid, escala 1:50 000. Dirección General de Urbanismo Planificación Regional. Consejería de Medioambiente y Ordenación del Territorio. Comunidad de Madrid. 81 p y 17 mapas. Pero, se han descartado por su escasa significación para este trabajo el cálculo de la erosión mediante la USE, el sellado y encostramiento, el riesgo de inundación y, por falta de datos, la calidad del agua de riego.

Datos climáticos: Instituto Nacional de Meteorología. (2000). Valores normales de precipitación y temperatura de la Red Climatológica (1961-1990). Publicación A-148. Madrid: Ministerio de Medio Ambiente.

Los datos restantes se han obtenido de la descripción general, descripción de horizontes y datos analíticos del perfil.

PP precipitación media anual: 473.1 mm; PC número de meses y meses con actividad vegetativa o período de crecimiento: secano 7: 10-4, regadío 12: 1-12; TC temperatura media época cálida (valor redondeado): 23°C; TF temperatura media época fría: 9.2°C; GE grado de erosión: nulo; DR drenaje: bien drenado; AA almacenamiento de agua: CRAD 63.0 mm, Reserva máxima 186.7 mm; ES espesor efectivo: 50 cm; CO compactación: ; PE permeabilidad: moderadamente lenta; pH: 8.4; MO materia orgánica: 1.3%; CC capacidad de intercambio catiónico: 16.0 cmol₍₊₎kg⁻¹; CA carbonatos: 8.9%; CE conductividad eléctrica: 0.08 dS/m; FR fragmentos rocosos: 13%; PG pedregosidad: 0%; PN pendiente: 3%.

CLASE Y SUBCLASE AGROLOGICA EN FUNCIÓN DE LAS PROPIEDADES Y CUALIDADES DEL PERFIL

Propiedades	PP	PC	TC	TF	GE	DR	AA	ES	СО	PE	pН	MO	CC	CA	CE	FR	PG	PN
Clase (sec.)	III	III	Ι	I	I	I	III	III		II	II	II	II	I	I	1I	I	II
Clase (reg.)	-	I	I	I	I	I	-	III		II	II	II	II	I	I	II	I	II
CLASE Y SUBCLASE AGROLOGICA (secano): IIIcs																		
CLASE Y SUI	CLASE Y SUBCLASE AGROLOGICA (regadío): IIIs																	

VALORACION: La tierra representada por este perfil es adecuada para uso agrícola y, por tanto, también para uso ganadero y forestal.

En secano la limitación más importante es el relativamente corto períodode crecimiento, limitado al otoño, invierno y primavera.

En regadío con condiciones climáticas totalmente favorables tan sólo subsiste como propiedad limitante el reducido espesor efectivo del suelo.