S237 YEB 3 Orgaz. Toledo

Estudio edafológico Los Yébenes-Orgaz. Trabajo fin de Carrera Ingeniero Agrónomo. E. Lacosta. 2011

Normalizado y ampliado por A. Saa y J. Gallardo. 2018.

Este perfil representa las zonas rojas.

En primer plano superficie del suelo S327b, al fondo superficie del suelo S327

Perfil: S327

Localización: Orgaz. Toledo

Fecha: 2009

Autores: J. Gallardo, E. Costa y A. Saa Coordenadas: 39°36′51′′N – 3°51′44′′W

Hoja Geológica: 685 Los Yébenes. Unidad cartográfica 13

Altitud: 782 m

Forma del terreno: llano

Posición fisiográfica: piedemonte de raña

Exposición: noroeste

Vegetación: fundamentalmente cultivo de olivar

Material originario: arcillas

Hontoria, C. (1995). El régimen de humedad de los suelos de la España peninsular. Tesis

Doctoral. E.T.S.I. Agrónomos (UPM)

Régimen de humedad del suelo: Régimen térmico del suelo:

Grado de erosión: ligero Drenaje: bien drenado

Inundación: no

Zona enraizada: 0-110 cm

Espesor efectivo del suelo: <100 cm

Fragmentos rocosos en la capa superficial (% de > 2 cm): 1%

Pedregosidad superficial (% superficie cubierta con >25cmø ó >38cm lado mayor): 0%

Pendiente general del terreno: 1.5%

DESCRIPCION DE HORIZONTES

		DE HURIZUNTES
Ар	0-22 cm	5YR3.5/4 húmedo y 5YR3.4/6 seco; 15% de fragmentos rocosos de cuarcita sin alterar;
		textura franca; estructura débil, granular mediana, (entre 15 y 22 cm suela de arado con
		tendencia laminar y consistencia muy dura) consistencia dura; muchos poros finos; pocas
		raíces finas; límite brusco y plano.
Bt1	22-65 cm	10R3/4 húmedo y 10R3/6 seco; 5% de fragmentos rocosos de cuarcitas sin alterar; textura
		arcilla; estructura fuerte, prismática fina que se resuelve en bloques muy finos; consistencia
		muy dura; cutanes de arcilla continuos y espesos en caras verticales y horizontales de los
		agregados; cutanes de presión; pocos poros muy finos; pocas raíces finas; sin reacción al
		HCI; límite neto y plano.
Bt2	65-110 cm	10R3/4 húmedo y 10R3/6 seco; 5% de fragmentos rocosos de cuarcitas sin alterar; textura
		arcilla; estructura fuerte, bloques tanto finos como gruesos; consistencia muy dura; cutanes
		de arcilla y de hierro-manganeso, continuos y espesos tanto en ceras verticales y
		horizontales de los agregados; pocos poros muy finos; muy pocas raíces finas; sin freacción
		al HCl; límite difuso y ondulacdo.
B/Ck	110-150 cm	10R3/6 húmedo; textura arcilla; estructura moderada, bloques medianos; consistencia
		blanda; cutanes de arcilla continuos y espesos en las caras verticales y horizontales de los
		agregados; cutanes de presión; frecuentes nódulos calizos muy gruesos, tanto alargados
		como redondeados, con núcleos duros de 2-3 cm y clor blanco; pocos poros muy finos; B
		con muy ligera efervescencia y Ck con ligera efervescencia al HCl.

DATOS ANALITICOS

Horiz.	Espesor	Grava				CC	PMP			
	cm	%	Arena	Limo	Arcilla	Ar mf.	Limo g.	Limo f.	%	%
Ар	0-22		41	44	15				25.6	19.5
Bt1	22-65		33	18	49				27.1	21.2
Bt2	65-110		32	9	59				29.8	22.8
Bt/Ck	110-150		22	20	58				29.1	15.9

Cursiva y subrayado indican que el dato ha sido estimado Grava 20-2mm; Arena 2-0.05mm; limo 0.05-0.002 mm; Arcilla < 0.002 mm; Arena muy fina 0.1-0.05mm; Limo grueso 0.05-0.02mm; Limo fino 0.02-0.002mm.

Horizonte	pН	D. apar.	M. O. %	C/N	CaCO3	CE dS/m	Mineralogía	Dithionit	o-Citrato
	(H2O)	gcm ⁻³			%		arcillas	Fe %	Al %
Ap	7.3		1.1	15	0.3				
Bt1	7.2		0.5		0.5				
Bt2	6.9		0.5		0.8				
Bt/Ck	8.9		0.3		16.5				

I – ilita, K – caolinita, E – esmectita, V – vermiculita, G – goetita. El orden en que se presentan en cada horizonte indica la abundancia.

Horizonte	Bases	de cambio N	H4OAc [cmo _l	_{l(+)} /kg]	Acidez	CIC [cn	no _{l(+)} /kg]	Sat. bases	ESP
	Ca	Mg	K	Na	cambio	Suma cat.	NH4OAc	%	
Ар	11.4	0.9	0.5	0.5			12.5	100	4.0
Bt1	40.0	0.5	0.4	0.3			33.3	100	0.9
Bt2	29.0	0.5	0.4	0.3			41.6	73	0.7
Bt/Ck	37.0	0.5	0.4	0.2			40.0	95	0.5

CLASIFICACION

World Refernce Base for Soil Resources 2006								
Diagnostic horizons	Argic (22-150 cm), calcic (110-150 cm)							
Diagnostic properties	Abrupt textural change (Ap/Bt1)							
Diagnostic materials								
	Cutanic Luvisol (Abruptic, Hypereutric,							
Reference soil group	Profondic, Clayic, Rhodic)							

Soil Taxonomy. Eleventh edition 2010	
Diagnostic surface horizon	Ochric (0-22 cm)
Diagnostic subsurface horizon	Argillic (22-150 cm), Calcic 110-150 cm)
Diagnostic soil characteristics for mineral soils	Abrupt textural change (Ap/Bt1)
Control section for particle size class	
Taxonomic class of soil	Calcic Rhodoxeralf

CAPACIDAD AGROLOGICA DE LA TIERRA

La Capacidad Agrológica se ha obtenido siguiendo el método de J. Gallardo, A. Saa, CH, Hontoria, J. Almorox. 2005. Mapa Agrológico: Capacidad Agrológica de las Tierras de la Comunidad de Madrid, escala 1:50 000. Dirección General de Urbanismo Planificación Regional. Consejería de Medioambiente y Ordenación del Territorio. Comunidad de Madrid. 81 p y 17 mapas. Pero, se han descartado por su escasa significación para este trabajo el cálculo de la erosión mediante la USE, el sellado y encostramiento, el riesgo de inundación y, por falta de datos, la calidad del agua de riego.

Datos climáticos: Instituto Nacional de Meteorología. (2000). Valores normales de precipitación y temperatura de la Red Climatológica (1961-1990). Publicación A-148. Madrid: Ministerio de Medio Ambiente.

Los datos restantes se han obtenido de la descripción general, descripción de horizontes y datos analíticos del perfil.

PP precipitación media anual: 416.7 mm; PC número de meses y meses con actividad vegetativa o período de crecimiento: secano 6: 10-11 y 2-5, regadío 10: 2-11; TC temperatura media época cálida (valor redondeado): 21°C; TF temperatura media época fría: 4.8°C; GE grado de erosión: ligero; DR drenaje: bien drenado; AA almacenamiento de agua: CRAD 100.2 mm, Reserva máxima 142.4 mm; ES espesor efectivo: <100 cm; CO compactación: ; PE permeabilidad: moderadamente rápida; pH: 7.3; MO materia orgánica: 0.9%; CC capacidad de intercambio catiónico: 33.3 cmol₍₊₎ kg⁻¹; CA carbonatos: 0%; CE conductividad eléctrica: dS/m; FR fragmentos rocosos: 1%; PG pedregosidad: 0%; PN pendiente: 1.5%.

CLASE Y SUBCLASE AGROLOGICA EN FUNCIÓN DE LAS PROPIEDADES Y CUALIDADES DEL PERFIL

Propiedades	PP	PC	TC	TF	GE	DR	AA	ES	СО	PE	pН	MO	CC	CA	CE	FR	PG	PN
Clase (sec.)	III	III	II	II	II	I	II	I		I	II	III	I	I		I	I	I
Clase (reg.)	-	I	II	II	II	I	-	I		I	II	III	I	I		I	I	I
CLASE Y SUBCLASE AGROLOGICA (regadio): IIIs																		

VALORACION: La tierra representada por este perfil es adecuada para agrícola y, por tanto, también para uso ganadero y forestal. En secano las limitaciones son climáticas (escasa precipitación media anual y corto período de crecimiento) a lo que se suma el bajo contenido de materia orgánica. En regadío se eliminan las limitaciones climáticas y tan sólo persiste la pobreza en materia orgánica. Con enmienda orgánica la tierra en regadío pasaría a clase agrológica II.

El cultivo de olivar en secano es el aprovechamiento dominante en estas tierras. Contrasta el diferente valor agronómico teórico de las entreveradas tierras representadas (ver fotos de paisaje) por los suelos **S237** y **S237b**: clases agrológicas III/II y VI respectivamente. Esta diferencia teórica debiera contrastarse empíricamente mediante la comparación de las producciones durante una serie de años.